

#### 95-865 Unstructured Data Analytics

Week 2: Finding possibly related entities, visualizing high-dimensional data (PCA, Isomap)

George Chen

# **Co-Occurrences**

For example: count # news articles that have different named entities co-occur

|                    | Apple | Facebook | Tesla |  |
|--------------------|-------|----------|-------|--|
| Elon Musk          | 10    | 15       | 300   |  |
| Mark<br>Zuckerberg | 500   | 10000    | 500   |  |
| Tim Cook           | 200   | 30       | 10    |  |

Big values  $\rightarrow$  possibly related named entities

How to downweight "Mark Zuckerberg" if there are just way more articles that mention him?

# Key idea: what would happen if people and companies were independent?

|                    | Apple | Facebook | Tesla |
|--------------------|-------|----------|-------|
| Elon Musk          | 10    | 15       | 300   |
| Mark<br>Zuckerberg | 500   | 10000    | 500   |
| Tim Cook           | 200   | 30       | 10    |

Probability of drawing "Elon Musk, Apple"?

Probability of drawing a card that says "Apple" on it?



#### Co-occurrence table

|                    | Apple | Facebook | Tesla |
|--------------------|-------|----------|-------|
| Elon Musk          | 10    | 15       | 300   |
| Mark<br>Zuckerberg | 500   | 10000    | 500   |
| Tim Cook           | 200   | 30       | 10    |

Total: 11565

#### Joint probability table



Total: 11565

#### Joint probability table

|                    | Apple   | Facebook | Tesla   |         |
|--------------------|---------|----------|---------|---------|
| Elon Musk          | 0.00086 | 0.00130  | 0.02594 | 0.02810 |
| Mark<br>Zuckerberg | 0.04323 | 0.86468  | 0.04323 | 0.95115 |
| Tim Cook           | 0.01729 | 0.00259  | 0.00086 | 0.02075 |
|                    | 0.06139 | 0.86857  | 0.07004 | -       |

Recall: if events A and B are independent, P(A, B) = P(A)P(B)

#### Joint probability table if people and companies were independent

|                    | Apple   | Facebook | Tesla   |         |
|--------------------|---------|----------|---------|---------|
| Elon Musk          | 0.00173 | 0.02441  | 0.00197 | 0.02810 |
| Mark<br>Zuckerberg | 0.05839 | 0.82614  | 0.06662 | 0.95115 |
| Tim Cook           | 0.00127 | 0.01802  | 0.00145 | 0.02075 |
|                    | 0.06139 | 0.86857  | 0.07004 | -       |

Recall: if events A and B are independent, P(A, B) = P(A)P(B)

# What we actually observe

What should be the case if people are companies are independent

|                                 | Apple            | Facebook            | Tesla            |
|---------------------------------|------------------|---------------------|------------------|
| Elon Musk                       | 0.00086          | 0.00130             | 0.02594          |
| Mark<br>Zuckerberg              | 0.04323          | 0.86468             | 0.04323          |
| Tim Cook                        | 0.01729          | 0.00259             | 0.00086          |
|                                 |                  |                     |                  |
|                                 | Apple            | Facebook            | Tesla            |
| Elon Musk                       | Apple<br>0.00173 | Facebook<br>0.02441 | Tesla<br>0.00197 |
| Elon Musk<br>Mark<br>Zuckerberg |                  |                     |                  |

# **Pointwise Mutual Information (PMI)**

Probability of A and B co-occurring



if equal to 1  $\rightarrow$  A, B are indep.

Probability of A and B co-occurring if they were independent

PMI(A, B) is defined as the log of the above ratio

PMI measures (the log of) a ratio that says how far A and B are from being independent

# Looking at All Pairs of Outcomes

- PMI measures how P(A, B) differs from P(A)P(B) using a log ratio
- Log ratio isn't the only way to compare!
- Another way to compare:

$$\frac{[P(A, B) - P(A) P(B)]^2}{P(A) P(B)}$$
Phi-square = 
$$\sum_{A, B} \frac{[P(A, B) - P(A) P(B)]^2}{P(A) P(B)}$$

Chi-square =  $N \times Phi$ -square

N = sum of all co-occurrence counts

Phi-square is between 0 and min(#rows, #cols)-1

 $0 \rightarrow \text{pairs are all}$  indep.

Measures how close *all* pairs of outcomes are close to being indep.

#### **PMI/Phi-Square/Chi-Square Calculation**

Demo

#### **Co-occurrence Analysis Applications**

- If you're an online store/retailer: anticipate when certain products are likely to be purchased/ rented/consumed more
  - Products & dates
- If you have a bunch of physical stores: anticipate *where* certain products are likely to be purchased/ rented/consumed more
  - Products & locations
- If you're the police department: create "heat map" of where different criminal activity occurs
  - Crime reports & locations

#### **Co-occurrence Analysis Applications**



• Crime reports & locations

# **Continuous Measurements**

- So far, looked at relationships between *discrete* outcomes
- For pair of *continuous* outcomes, use a **scatter plot**



Image source: https://plot.ly/~MattSundquist/5405.png

#### The Importance of Staring at Data



# Correlation



Negatively correlated

Not really correlated

Positively correlated

Beware: Just because two variables appear correlated doesn't mean that one can predict the other

# Correlation ≠ Causation



doesn't mean it has predictive value!

Image source: http://www.realclimate.org/index.php/archives/2007/05/fun-with-correlations/

# Important: At this point in the course, we are finding *possible* relationships between two entities

We are *not* yet making statements about prediction (we'll see prediction later in the course)

We are *not* making statements about causality (beyond the scope of this course)

# Causality



Studies in 1960's: Coffee drinkers have higher rates of lung cancer Can we claim that coffee is a cause of lung cancer?

Back then: coffee drinkers also tended to smoke more than non-coffee drinkers (smoking is a **confounding variable**)

To establish causality, groups getting different treatments need to appear similar so that the only difference is the treatment

Image source: George Chen

# **Establishing Causality**

If you control data collection



Example: figure out webpage layout to maximize revenue (Amazon)

Example: figure out how to present educational material to improve learning (Khan Academy)

#### If you do not control data collection

In general: not obvious establishing what caused what

# 95-865

Part I: Exploratory data analysis

Identify structure present in "unstructured" data

- Frequency and co-occurrence analysis Basic probability & statistics
- Visualizing high-dimensional data/dimensionality reduction
- Clustering
- Topic modeling (a special kind of clustering)

Part II: Predictive data analysis

Make predictions using structure found in Part I

- Classical classification methods
- Neural nets and deep learning for analyzing images and text

# Visualizing High-Dimensional Vectors

The next two examples are drawn from: http://setosa.io/ev/principal-component-analysis/

#### **Visualizing High-Dimensional Vectors**







# The issue is that as humans we can only really visualize up to 3 dimensions easily

Goal: Somehow reduce the dimensionality of the data preferably to 1, 2, or 3



Hervé Abdi and Lynne J. Williams. Principal component analysis. Wiley Interdisciplinary Reviews: Computational Statistics. 2010.

How to project 2D data down to 1D?



Simplest thing to try: flatten to one of the red axes

How to project 2D data down to 1D?



Simplest thing to try: flatten to one of the red axes (We could of course flatten to the other red axis)

How to project 2D data down to 1D?



How to project 2D data down to 1D?



How to project 2D data down to 1D?



But notice that most of the variability in the data is *not* aligned with the red axes!

How to project 2D data down to 1D?



How to project 2D data down to 1D?



The idea of PCA actually works for  $2D \rightarrow 2D$  as well (and just involves rotating, and not "flattening" the data)

How to project 2D data down to 1D? How to rotate 2D data so 1st axis has most variance

The idea of PCA actually works for  $2D \rightarrow 2D$  as well (and just involves rotating, and not "flattening" the data)

2nd green axis chosen to be 90° ("orthogonal") from first green axis

- Finds top *k* orthogonal directions that explain the most variance in the data
  - 1st component: explains most variance along 1 dimension
  - 2nd component: explains most of remaining variance along next dimension that is orthogonal to 1st dimension
  - ...
- "Flatten" data to the top k dimensions to get lower dimensional representation (if k <original dimension)

3D example from: http://setosa.io/ev/principal-component-analysis/

### Principal Component Analysis (PCA)

Demo

PCA reorients data so axes explain variance in "decreasing order"
→ can "flatten" (*project*) data onto a few axes that captures most variance



Image source: http://4.bp.blogspot.com/-USQEgoh1jCU/VfncdNOETcI/AAAAAAAGp8/ Hea8UtE\_1c0/s1600/Blog%2B1%2BIMG\_1821.jpg



PCA would just flatten this thing and lose the information that the data actually lives on a 1D line that has been curved!



Image source: http://4.bp.blogspot.com/-USQEgoh1jCU/VfncdNOETcI/AAAAAAAGp8/ Hea8UtE\_1c0/s1600/Blog%2B1%2BIMG\_1821.jpg













This is the desired result

## Manifold Learning

- Nonlinear dimensionality reduction (in contrast to PCA which is linear)
- Find low-dimensional "manifold" that the data live on



Basic idea of a manifold:

1. Zoom in on any point (say, x)

2. The points near *x* look like they're in a lower-dimensional Euclidean space (e.g., a 2D plane in Swiss roll)

### Do Data Actually Live on Manifolds?



Image source: http://www.columbia.edu/~jwp2128/Images/faces.jpeg

### **Do Data Actually Live on Manifolds?**



Image source: http://www.adityathakker.com/wp-content/uploads/2017/06/wordembeddings-994x675.png

### **Do Data Actually Live on Manifolds?**



Mnih, Volodymyr, et al. Human-level control through deep reinforcement learning. Nature 2015.

# Manifold Learning with Isomap



Step 3: It turns out that given all the distances between pairs of points, we can compute what the points should be (the algorithm for this is called *multidimensional scaling*)

#### In orange: road lengths

- 2 nearest neighbors of A: B, C
- 2 nearest neighbors of B: A, C
- 2 nearest neighbors of C: B, D
- 2 nearest neighbors of D: C, E

2 nearest neighbors of E: C, D

Build "symmetric 2-NN" graph (add edges for each point to its 2 nearest neighbors)

|   | А | В | С | D | E |
|---|---|---|---|---|---|
| А |   |   |   |   |   |
| В |   |   |   |   |   |
| С |   |   |   |   |   |
| D |   |   |   |   |   |
| E |   |   |   |   |   |

#### In orange: road lengths

- 2 nearest neighbors of A: B, C
- 2 nearest neighbors of B: A, C
- 2 nearest neighbors of C: B, D
- 2 nearest neighbors of D: C, E

2 nearest neighbors of E: C, D

Build "symmetric 2-NN" graph (add edges for each point to its 2 nearest neighbors)

|   | A | В | С | D | E |
|---|---|---|---|---|---|
| А | 0 |   |   |   |   |
| В |   | 0 |   |   |   |
| С |   |   | 0 |   |   |
| D |   |   |   | 0 |   |
| Е |   |   |   |   | 0 |



#### In orange: road lengths

- 2 nearest neighbors of A: B, C
- 2 nearest neighbors of B: A, C
- 2 nearest neighbors of C: B, D
- 2 nearest neighbors of D: C, E

2 nearest neighbors of E: C, D

Build "symmetric 2-NN" graph (add edges for each point to its 2 nearest neighbors)

|   | А | В | С | D | E |
|---|---|---|---|---|---|
| А | 0 | 5 |   |   |   |
| В |   | 0 | 5 |   |   |
| С |   |   | 0 | 5 |   |
| D |   |   |   | 0 | 5 |
| Е |   |   |   |   | 0 |



#### In orange: road lengths

- 2 nearest neighbors of A: B, C
- 2 nearest neighbors of B: A, C
- 2 nearest neighbors of C: B, D
- 2 nearest neighbors of D: C, E

2 nearest neighbors of E: C, D

Build "symmetric 2-NN" graph (add edges for each point to its 2 nearest neighbors)

|   | А | В | С | D | E |
|---|---|---|---|---|---|
| А | 0 | 5 | 8 |   |   |
| В |   | 0 | 5 |   |   |
| С |   |   | 0 | 5 |   |
| D |   |   |   | 0 | 5 |
| Е |   |   |   |   | 0 |



#### In orange: road lengths

- 2 nearest neighbors of A: B, C
- 2 nearest neighbors of B: A, C
- 2 nearest neighbors of C: B, D
- 2 nearest neighbors of D: C, E

2 nearest neighbors of E: C, D

Build "symmetric 2-NN" graph (add edges for each point to its 2 nearest neighbors)

|   | А | В | С | D  | E |
|---|---|---|---|----|---|
| А | 0 | 5 | 8 | 13 |   |
| В |   | 0 | 5 |    |   |
| С |   |   | 0 | 5  |   |
| D |   |   |   | 0  | 5 |
| Е |   |   |   |    | 0 |



#### In orange: road lengths

- 2 nearest neighbors of A: B, C
- 2 nearest neighbors of B: A, C
- 2 nearest neighbors of C: B, D
- 2 nearest neighbors of D: C, E

2 nearest neighbors of E: C, D

Build "symmetric 2-NN" graph (add edges for each point to its 2 nearest neighbors)

|   | А | В | С | D  | E  |
|---|---|---|---|----|----|
| А | 0 | 5 | 8 | 13 | 16 |
| В |   | 0 | 5 |    |    |
| С |   |   | 0 | 5  |    |
| D |   |   |   | 0  | 5  |
| Е |   |   |   |    | 0  |



#### In orange: road lengths

- 2 nearest neighbors of A: B, C
- 2 nearest neighbors of B: A, C
- 2 nearest neighbors of C: B, D
- 2 nearest neighbors of D: C, E

2 nearest neighbors of E: C, D

Build "symmetric 2-NN" graph (add edges for each point to its 2 nearest neighbors)

|   | А | В | С | D  | E  |
|---|---|---|---|----|----|
| А | 0 | 5 | 8 | 13 | 16 |
| В |   | 0 | 5 | 10 |    |
| С |   |   | 0 | 5  |    |
| D |   |   |   | 0  | 5  |
| Е |   |   |   |    | 0  |



#### In orange: road lengths

- 2 nearest neighbors of A: B, C
- 2 nearest neighbors of B: A, C
- 2 nearest neighbors of C: B, D
- 2 nearest neighbors of D: C, E

2 nearest neighbors of E: C, D

Build "symmetric 2-NN" graph (add edges for each point to its 2 nearest neighbors)

|   | А | В | С | D  | E  |
|---|---|---|---|----|----|
| А | 0 | 5 | 8 | 13 | 16 |
| В |   | 0 | 5 | 10 | 13 |
| С |   |   | 0 | 5  |    |
| D |   |   |   | 0  | 5  |
| Е |   |   |   |    | 0  |



#### In orange: road lengths

- 2 nearest neighbors of A: B, C
- 2 nearest neighbors of B: A, C
- 2 nearest neighbors of C: B, D
- 2 nearest neighbors of D: C, E

2 nearest neighbors of E: C, D

Build "symmetric 2-NN" graph (add edges for each point to its 2 nearest neighbors)

|   | А | В | С | D  | E  |
|---|---|---|---|----|----|
| А | 0 | 5 | 8 | 13 | 16 |
| В |   | 0 | 5 | 10 | 13 |
| С |   |   | 0 | 5  | 8  |
| D |   |   |   | 0  | 5  |
| Е |   |   |   |    | 0  |



#### In orange: road lengths

- 2 nearest neighbors of A: B, C
- 2 nearest neighbors of B: A, C
- 2 nearest neighbors of C: B, D
- 2 nearest neighbors of D: C, E

2 nearest neighbors of E: C, D

Build "symmetric 2-NN" graph (add edges for each point to its 2 nearest neighbors)

|   | А  | В  | С | D  | E  |
|---|----|----|---|----|----|
| А | 0  | 5  | 8 | 13 | 16 |
| В | 5  | 0  | 5 | 10 | 13 |
| С | 8  | 5  | 0 | 5  | 8  |
| D | 13 | 10 | 5 | 0  | 5  |
| E | 16 | 13 | 8 | 5  | 0  |



#### In orange: road lengths

- 2 nearest neighbors of A: B, C
- 2 nearest neighbors of B: A, C
- 2 nearest neighbors of C: B, D
- 2 nearest neighbors of D: C, E

2 nearest neighbors of E: C, D

Build "symmetric 2-NN" graph (add edges for each point to its 2 nearest neighbors)

|   | А                                         | В                                                         | С       | D       | E                |  |  |  |
|---|-------------------------------------------|-----------------------------------------------------------|---------|---------|------------------|--|--|--|
| А | 0                                         | 5                                                         | 8       | 13      | 16               |  |  |  |
| В | _ multi                                   | This matrix gets fed into multidimensional scaling to get |         |         |                  |  |  |  |
| С | 81D                                       | versior                                                   | n of A, | B, C, D | , E <sup>8</sup> |  |  |  |
| D | <sup>13</sup> The solution is not unique! |                                                           |         |         |                  |  |  |  |
| Е | 16                                        | 13                                                        | 8       | 5       | 0                |  |  |  |



Demo

### **3D Swiss Roll Example**

Key idea: true distance on manifold is the blue line



We're approximating the blue line with the red line (poor choice of # nearest neighbors can make approximation bad)

Joshua B. Tenenbaum, Vin de Silva, John C. Langford. A Global Geometric Framework for Nonlinear Dimensionality Reduction. Science 2000.

### Some Observations on Isomap



In general: try different parameters for nearest neighbor graph construction when using Isomap + visualize