Carnegie Mellon University
 HemzCollege

95-865 Unstructured Data Analytics

Week 2: Finding possibly related entities, visualizing high-dimensional data (PCA, Isomap)

George Chen

Co-Occurrences

For example: count \# news articles that have different named entities co-occur

Big values \rightarrow possibly related named entities
How to downweight "Mark Zuckerberg" if there are just way more articles that mention him?

Key idea: what would happen if people and companies were independent?

Apple	Facebook	Tesla	
Elon Musk	10	15	300
Mark Zuckerberg	500	10000	500
Tim Cook	200	30	

Probability of drawing "Elon Musk, Apple"?

Probability of drawing a card that says
"Apple" on it?

10 of these cards:

15 of these cards:
Elon Musk, Facebook

300 of these cards:

$:$
10 of these cards:

Co-occurrence table

	Apple	Facebook	Tesla
Elon Musk	10	15	300
Mark Zuckerberg	500	10000	500
Tim Cook	200	30	10

Total: 11565

Joint probability table

Total: 11565

Joint probability table

	Apple	Facebook	Tesla	
Elon Musk	0.00086	0.00130	0.02594	0.02810
Mark Zuckerberg	0.04323	0.86468	0.04323	0.95115
Tim Cook	0.01729	0.00259	0.00086	0.02075
	0.06139	0.86857	0.07004	

Recall: if events A and B are independent, $P(A, B)=P(A) P(B)$

Joint probability table if people and companies were independent

Recall: if events A and B are independent, $P(A, B)=P(A) P(B)$

What we actually observe

What should be the case if people are companies are independent

	Apple	Facebook	Tesla
Elon Musk	0.00086	0.00130	0.02594
Mark Zuckerberg	0.04323	0.86468	0.04323
Tim Cook	0.01729	0.00259	0.00086
	Apple	Facebook	Tesla
Elon Musk	0.00173	0.02441	0.00197
Mark Zuckerberg	0.05839	0.82614	0.06662
Tim Cook	0.00127	0.01802	0.00145

Pointwise Mutual Information (PMI)

Probability of A and B co-occurring


```
if equal to 1
\(\rightarrow A, B\) are indep.
```

Probability of A and B co-occurring if they were independent
$\operatorname{PMI}(\mathrm{A}, \mathrm{B})$ is defined as the log of the above ratio

PMI measures (the log of) a ratio that says how far A and B are from being independent

Looking at All Pairs of Outcomes

- $P M I$ measures how $P(A, B)$ differs from $P(A) P(B)$ using a log ratio
- Log ratio isn't the only way to compare!
- Another way to compare:

Phi-square is
between 0 and min(\#rows, \#cols)-1
$0 \rightarrow$ pairs are all indep.

Measures how close all pairs of outcomes are close to being indep.
$N=$ sum of all co-occurrence counts

PMI/Phi-Square/Chi-Square Calculation

Demo

Co-occurrence Analysis Applications

- If you're an online store/retailer:
anticipate when certain products are likely to be purchased/ rented/consumed more
- Products \& dates
- If you have a bunch of physical stores: anticipate where certain products are likely to be purchased/ rented/consumed more
- Products \& locations
- If you're the police department:
create "heat map" of where different criminal activity occurs
- Crime reports \& locations

Co-occurrence Analysis Applications

- If you're an online store/retailer:

re Examples of data to take advantage of:
- data collected by your organization
- social networks
- If - news websites
ar - blogs
re
- Web scraping frameworks can be helpful:
- Scrapy
- If . . Selenium (great with JavaScript-heavy pages) jurs
- Crime reports \& locations

Continuous Measurements

- So far, looked at relationships between discrete outcomes
- For pair of continuous outcomes, use a scatter plot
Computing Improvements: Transistors Per Circuit

The Importance of Staring at Data

Correlation

Beware: Just because two variables appear correlated doesn't mean that one can predict the other

Correlation \neq Causation

Important: At this point in the course, we are finding possible relationships between two entities

We are not yet making statements about prediction (we'll see prediction later in the course)

We are not making statements about causality (beyond the scope of this course)

Causality

Studies in 1960's: Coffee drinkers have higher rates of lung cancer
Can we claim that coffee is a cause of lung cancer?
Back then: coffee drinkers also tended to smoke more than non-coffee drinkers (smoking is a confounding variable)
To establish causality, groups getting different treatments need to appear similar so that the only difference is the treatment

Establishing Causality

If you control data collection

Compare outcomes of two groups
Randomized controlled trial (RCT) also called A/B testing

Example: figure out webpage layout to maximize revenue (Amazon)
Example: figure out how to present educational material to improve learning (Khan Academy)

If you do not control data collection
In general: not obvious establishing what caused what

95-865

Part I: Exploratory data analysis
Identify structure present in "unstructured" data

- "Frequency and co-occurrence analysis Basic probability \& statistics,
- Visualizing high-dimensional data/dimensionality reduction
- Clustering
- Topic modeling (a special kind of clustering)

Part II: Predictive data analysis
Make predictions using structure found in Part I

- Classical classification methods
- Neural nets and deep learning for analyzing images and text

Visualizing High-Dimensional Vectors

Visualizing High-Dimensional Vectors

How to
visualize these for comparison? ${ }^{800}$

Using our earlier analysis:
Compare pairs of food items across locations
(e.g., scatter plot of cheese vs cereals consumption)

But unclear how to compare the locations (England, Wales, Scotland, N. Ireland)!

The issue is that as humans we can only really visualize up to 3 dimensions easily

Goal: Somehow reduce the dimensionality of the data preferably to 1, 2, or 3

Principal Component Analysis (PCA)

How to project 2D data down to 1D?

Principal Component Analysis (PCA)

How to project 2D data down to 1D?

Simplest thing to try: flatten to one of the red axes

Principal Component Analysis (PCA)

How to project 2D data down to 1D?

Simplest thing to try: flatten to one of the red axes
(We could of course flatten to the other red axis)

Principal Component Analysis (PCA)

How to project 2D data down to 1D?

Principal Component Analysis (PCA)

How to project 2D data down to 1D?

Principal Component Analysis (PCA)

How to project 2D data down to 1D?

But notice that most of the variability in the data is not aligned with the red axes!

Principal Component Analysis (PCA)

How to project 2D data down to 1D?

Principal Component Analysis (PCA)

How to project 2D data down to 1D?

The idea of PCA actually works for 2D \rightarrow 2D as well (and just involves rotating, and not "flattening" the data)

Principal Component Analysis (PCA)

How to project 2D - data downto 1D?
How to rotate 2D data so 1st axis has most variance

The idea of PCA actually works for 2D $\rightarrow 2 \mathrm{D}$ as well (and just involves rotating, and not "flattening" the data)

2nd green axis chosen to be 90° ("orthogonal") from first green axis

Principal Component Analysis (PCA)

- Finds top k orthogonal directions that explain the most variance in the data
- 1st component: explains most variance along 1 dimension
- 2nd component: explains most of remaining variance along next dimension that is orthogonal to 1st dimension
- ...
- "Flatten" data to the top k dimensions to get lower dimensional representation (if $k<$ original dimension)

Principal Component Analysis (PCA)

3D example from:
http://setosa.io/ev/principal-component-analysis/

Principal Component Analysis (PCA)

Demo

PCA reorients data so axes explain variance in "decreasing order" \rightarrow can "flatten" (project) data onto a few axes that captures most variance

Image source: http://4.bp.blogspot.com/-USQEgoh1jCU/NfncdNOETcl/AAAAAAAAGp8/ Hea8UtE_1c0/s1600/Blog\%2B1\%2BIMG_1821.jpg

2D Swiss Roll

PCA would just flatten this thing and lose the information that the data actually lives on a 1D line that has been curved!

Image source: http://4.bp.blogspot.com/-USQEgoh1jCU/NfncdNOETcl/AAAAAAAAGp8/ Hea8UtE_1c0/s1600/Blog\%2B1\%2BIMG_1821.jpg

2D Swiss Roll

2D Swiss Roll

2D Swiss Roll

2D Swiss Roll

2D Swiss Roll

2D Swiss Roll

This is the desired result

Manifold Learning

- Nonlinear dimensionality reduction (in contrast to PCA which is linear)
- Find low-dimensional "manifold" that the data live on

Basic idea of a manifold:

1. Zoom in on any point (say, x)
2. The points near x look like they're in a lower-dimensional

Euclidean space
(e.g., a 2D plane in Swiss roll)

Do Data Actually Live on Manifolds?

Image source: http://www.columbia.edu/~jwp2128/Images/faces.jpeg

Do Data Actually Live on Manifolds?

Image source: http://www.adityathakker.com/wp-content/uploads/2017/06/word-embeddings-994x675.png

Do Data Actually Live on Manifolds?

Mnih, Volodymyr, et al. Human-level control through deep reinforcement learning. Nature 2015.

Manifold Learning with Isomap

Step 1: For each point, find its nearest neighbors, and build a road ("edge") between them

Step 2: Compute shortest distance from each point to every other point where you're only allowed to travel on the roads
Step 3: It turns out that given all the distances between pairs of points, we can compute what the points should be (the algorithm for this is called multidimensional scaling)

Isomap Calculation Example

In orange: road lengths
2 nearest neighbors of A : B, C

2 nearest neighbors of B : A, C
2 nearest neighbors of C : B, D
2 nearest neighbors of $\mathrm{D}: \mathrm{C}, \mathrm{E}$
2 nearest neighbors of $E: C, D$
Build "symmetric 2-NN" graph (add edges for each point to its 2 nearest neighbors)

Shortest distances between every point to every other point where we are only allowed to travel along the roads

	A	B	C	D
A				E
B				
C				
D				
E				

Isomap Calculation Example

In orange: road lengths
2 nearest neighbors of A : B, C

2 nearest neighbors of B : A, C
2 nearest neighbors of C : B, D
2 nearest neighbors of $\mathrm{D}: \mathrm{C}, \mathrm{E}$
2 nearest neighbors of E : C, D
Build "symmetric 2-NN" graph (add edges for each point to its 2 nearest neighbors)

Shortest distances between every point to every other point where we are only allowed to travel along the roads

	A	B	C	D
A	0			
B		0		
C			0	
D				0
E				

Isomap Calculation Example

In orange: road lengths
2 nearest neighbors of A : B, C

2 nearest neighbors of B : A, C
2 nearest neighbors of C : B, D
2 nearest neighbors of $\mathrm{D}: \mathrm{C}, \mathrm{E}$
2 nearest neighbors of $E: C, D$
Build "symmetric 2-NN" graph (add edges for each point to its 2 nearest neighbors)

Shortest distances between every point to every other point where we are only allowed to travel along the roads

	A	B	C	D
A	0	5		
B		0	5	
C			0	5
D				0
E				

Isomap Calculation Example

In orange: road lengths
2 nearest neighbors of A : B, C

2 nearest neighbors of B : A, C
2 nearest neighbors of C : B, D
2 nearest neighbors of $\mathrm{D}: \mathrm{C}, \mathrm{E}$
2 nearest neighbors of E : C, D
Build "symmetric 2-NN" graph (add edges for each point to its 2 nearest neighbors)

Shortest distances between every point to every other point where we are only allowed to travel along the roads

	A	B	C	D
A	0	5	8	
B		0	5	
C			0	5
D				0
E				

Isomap Calculation Example

In orange: road lengths
2 nearest neighbors of A : B, C

2 nearest neighbors of B : A, C
2 nearest neighbors of C : B, D
2 nearest neighbors of $\mathrm{D}: \mathrm{C}, \mathrm{E}$
2 nearest neighbors of $E: C, D$
Build "symmetric 2-NN" graph (add edges for each point to its 2 nearest neighbors)

Shortest distances between every point to every other point where we are only allowed to travel along the roads

	A	B	C	D
A	0	5	8	13
B		0	5	
C			0	5
D				0
E				

Isomap Calculation Example

In orange: road lengths
2 nearest neighbors of A : B, C

2 nearest neighbors of B : A, C
2 nearest neighbors of C : B, D
2 nearest neighbors of $\mathrm{D}: \mathrm{C}, \mathrm{E}$
2 nearest neighbors of $E: C, D$
Build "symmetric 2-NN" graph (add edges for each point to its 2 nearest neighbors)

Shortest distances between every point to every other point where we are only allowed to travel along the roads

	A	B	C	D
A	0	5	8	13
B		0	5	16
C			0	5
D				0
E				

Isomap Calculation Example

In orange: road lengths
2 nearest neighbors of A : B, C

2 nearest neighbors of B : A, C
2 nearest neighbors of C : B, D
2 nearest neighbors of $\mathrm{D}: \mathrm{C}, \mathrm{E}$
2 nearest neighbors of $E: C, D$
Build "symmetric 2-NN" graph (add edges for each point to its 2 nearest neighbors)

Shortest distances between every point to every other point where we are only allowed to travel along the roads

	A	B	C	D
A	0	5	8	13
B		0	5	10
C			0	5
D				0
E				

Isomap Calculation Example

In orange: road lengths
2 nearest neighbors of A : B, C

2 nearest neighbors of B : A, C
2 nearest neighbors of C : B, D
2 nearest neighbors of $\mathrm{D}: \mathrm{C}, \mathrm{E}$
2 nearest neighbors of $E: C, D$
Build "symmetric 2-NN" graph (add edges for each point to its 2 nearest neighbors)

Shortest distances between every point to every other point where we are only allowed to travel along the roads

	A	B	C	D
A	0	5	8	13
B		0	5	10
C			0	5
D				0
E				

Isomap Calculation Example

In orange: road lengths
2 nearest neighbors of A : B, C

2 nearest neighbors of B : A, C
2 nearest neighbors of C : B, D
2 nearest neighbors of $\mathrm{D}: \mathrm{C}, \mathrm{E}$
2 nearest neighbors of E : C, D
Build "symmetric 2-NN" graph (add edges for each point to its 2 nearest neighbors)

Shortest distances between every point to every other point where we are only allowed to travel along the roads

	A	B	C	D
A	0	5	8	13
B		0	5	10
C			0	5
D				0
E				

Isomap Calculation Example

In orange: road lengths
2 nearest neighbors of A : B, C

2 nearest neighbors of B : A, C
2 nearest neighbors of C : B, D
2 nearest neighbors of $\mathrm{D}: \mathrm{C}, \mathrm{E}$
2 nearest neighbors of E : C, D
Build "symmetric 2-NN" graph (add edges for each point to its 2 nearest neighbors)

Shortest distances between every point to every other point where we are only allowed to travel along the roads

	A	B	C	D
A	0	5	8	13
B	5	0	5	10
C	8	5	0	5
D	13	10	5	0
E	16	13	8	5

Isomap Calculation Example

In orange: road lengths 2 nearest neighbors of A : B, C

2 nearest neighbors of B : A, C
2 nearest neighbors of C : B, D
2 nearest neighbors of $\mathrm{D}: \mathrm{C}, \mathrm{E}$
2 nearest neighbors of $E: C, D$
Build "symmetric 2-NN" graph (add edges for each point to its 2 nearest neighbors)

Shortest distances between every point to every other point where we are only allowed to travel along the roads

	A	B	C	D	E
A	0	5	8	13	16
B	This matrix gets fed into				
multidimensional scaling to get					
C	1D version of A, B, C, D, E				
D	The solution is not unique!				
E	16	13	8	5	0

Isomap Calculation Example

Demo

3D Swiss Roll Example

Key idea: true distance on manifold is the blue line

B

C

We're approximating the blue line with the red line (poor choice of \# nearest neighbors can make approximation bad)

Joshua B. Tenenbaum, Vin de Silva, John C. Langford. A Global Geometric Framework for Nonlinear Dimensionality Reduction. Science 2000.

Some Observations on Isomap

\downarrow The quality of the result critically depends on the nearest neighbor graph

Emphasize local structure

Ask for nearest neighbors to be really close by

There might not be enough edges

Emphasize global structure
Allow for nearest neighbors to be farther away
Might connect points that shouldn't be connected

In general: try different parameters for nearest neighbor graph construction when using Isomap + visualize

